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D2-POR: Direct Repair and Dynamic Operations in Network
Coding-Based Proof of Retrievability∗

Kazumasa OMOTE†, Member and Phuong-Thao TRAN†a), Nonmember

SUMMARY Proof of Retrievability (POR) is a protocol by which a
client can distribute his/her data to cloud servers and can check if the data
stored in the servers is available and intact. After that, network coding-
based POR has been applied to improve network throughput. Although
many network coding-based PORs have been proposed, most of them have
not achieved the following practical features: direct repair and dynamic
operations. In this paper, we propose the D2-POR scheme (Direct repair
and Dynamic operations in network coding-based POR) to address these
shortcomings. When a server is corrupted, the D2-POR can support the
direct repair in which the data stored in the corrupted server can be repaired
using the data directly provided by healthy servers. The client is thus free
from the burden of data repair. Furthermore, the D2-POR allows the client
to efficiently perform dynamic operations, i.e., modification, insertion and
deletion.
key words: Proof of Retrievability, network coding, direct repair, dynamic
operations

1. Introduction

Since amount of data is increasing exponentially, data stor-
age and data management become burdensome tasks of the
client. Therefore, storage providers called clouds have been
proposed to allow the client to store, manage and share the
data portably and easily from anywhere via the Internet.
However, because cloud providers could not be trustwor-
thy, this system introduces three security challenges: data
availability, data integrity and data confidentiality. Ensuring
data availability and data integrity is the primary require-
ment before ensuring data confidentiality because data avail-
ability and data integrity are the prerequisites of the exis-
tence of a system. This paper thus focuses on data avail-
ability and data integrity. To support the client to check
whether the data stored in the servers is available and intact,
researchers proposed Proof of Retrievability (POR) [1]–[3],
which is a challenge-response protocol between a client and
a server. Based on the POR, the following three approaches
are commonly used: replication, erasure coding, and net-
work coding. In the replication [4]–[6], the client stores a
file replica in each server. The client can perform periodic
server checks. If a server is corrupted, the client will use
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a healthy replica to repair the corruption. The drawback
of this approach is the high storage cost for the redundant
replicas. To address this drawback, erasure coding has been
applied in [7]–[10]. Instead of storing file replicas as repli-
cation, the client stores file blocks in each server. Hence, the
storage cost can be reduced. However, the drawback of this
approach is that to repair a corrupted server, the client must
reconstruct the original file before generating new coded
blocks. The computation cost is thus increased during data
repair. To address this drawback, network coding has been
applied in [11]–[13] in which the client does not need to
reconstruct the original file before repairing the corruption.
Instead, the client can retrieve coded blocks from healthy
servers to generate new coded blocks. Therefore, this paper
focuses on network coding. In addition, the data stored in
the servers cannot be checked without additional informa-
tion, i.e., Message Authentication Code (MAC tag) (used
in a symmetric key setting) or signature (used in an asym-
metric key setting). Because it is well-known that a sym-
metric key setting is more efficient than an asymmetric key
setting, we thus focus on MAC tags. Concretely, to be suit-
able for network coding, we use homomorphic MACs in our
scheme [14]–[16].

Network Coding-based POR. Dimakis et al. [17] were the
first to apply the network coding to distributed storage sys-
tems and achieve a reduction in the communication over-
head of the repair component. Li et al. [18] introduced a
tree-structure data regeneration with linear network coding
to achieve an efficient regeneration traffic and bandwidth ca-
pacity by using an undirected-weighted maximum spanning
tree. Chen et al. [19] then proposed the Remote Data Check-
ing for Network Coding-based distributed storage system
(RDC-NC) which provides an elegant data repair by recod-
ing encoded blocks in healthy servers during repair. H. Chen
et al. [20] proposed the NC-Cloud scheme to improve cost-
effective repair using the functional minimum-storage re-
generating (FMSR) code and lighten the encoding require-
ment of storage nodes during repair. However, most of
these schemes have the following shortcomings. Firstly, the
schemes can only support the indirect repair. That is, to re-
pair a corrupted server, the client must require the healthy
servers to provide aggregated coded blocks and aggregated
tags, and send them back to the client. The client then
checks the provided coded blocks using the provided tags,
and computes new coded blocks and new tags to replace the
corruption. The client sends the new coded blocks and tags
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to the new server. Such a repair mechanism is a troublesome
task for the client. Because the data repair is performed
very often during the system lifetime, the client thus incurs
high computation and communication costs. Secondly, the
schemes do not consider dynamic operations. That is, the
client can only perform data check and data retrieval, but
cannot perform modification, insertion and deletion. A few
PORs were proposed to deal with the dynamic operations,
e.g, [21]–[24]; however, all these schemes are based on era-
sure coding, not network coding.

There are two notable schemes which are mostly re-
lated to our proposed scheme. The first one is the MD-
POR [25], which can support the direct repair, but cannot
support the dynamic operations. The second one is the NC-
Audit [26], which also considered the direct repair and dy-
namic operations. However, when the direct repair is sup-
ported, this scheme cannot prevent pollution attack which
is a common attack of network coding. This is because the
new server cannot check the provided coded blocks. Fur-
thermore, the dynamic operations have not been completed
and have not been discussed with clear details. For the in-
sertion, the authors said that the insertion does not work in
their scheme. For the modification, the authors discuss how
to update tags without showing how to update coded blocks.
For the deletion, there is no concrete explanation.

Contribution. In this paper, we propose the D2-POR
scheme with the following contributions:
• Direct repair: when a server is corrupted, the healthy

servers will provide their coded blocks and tags di-
rectly to the new server without sending them back to
the client. Then, the new server can check them to
prevent pollution attack, and can compute new coded
blocks and tags for itself. The client is thus free from
the repair process.

• Dynamic operations: the client not only can check and
retrieve the data, but also can modify, insert and delete
the data.

• Symmetric key setting: our scheme does not use any
public key for the efficiency. The direct repair feature
introduces a challenge that how to allow the new server
which is untrusted to check and compute new coded
blocks and tags without using a public key. Our scheme
can address this problem by using an orthogonal key
technique called InterMac [27].

Roadmap. The backgrounds of the POR, network cod-
ing and InterMac are described in Sect. 2. The adversarial
model is presented in Sect. 3. The D2-POR scheme is pro-
posed in Sect. 4. The security and efficiency analyses are
shown in Sects. 5 and 6. A numeric example is given in
Sect. 7. The conclusion is drawn in Sect. 8.

2. Background

2.1 The POR Framework

The POR [1]–[3] is a challenge-response protocol between
a verifier V (client) and a prover P (server), and consists of
the following algorithms:
• Keygen(λ) → κ: run by V . This algorithm inputs a

security parameter s and outputs a secret key κ (For an
asymmetric key system, κ is a public/private key pair.)

• Encode(F, κ) → F′: run by V . This algorithm inputs
an original file F and κ, and outputs an encoded file F∗,
and then sends F∗ to P.

• Check() → {accept/deny}: run by both V and P.
Firstly, V generates a challenge c and sends c to P. P
then computes a response r and sends r back to V . V
finally verifies P based on c and r.

• Repair(): run by V . When a corruption is detected, V
executes this algorithm to repair the corruption. The
technique of repair depends on each specific scheme,
i.e, replication, erasure coding or network coding.

2.2 Network Coding in Distributed Storage System

Network coding [11]–[13] has been proposed for cost-
efficiency in data transmission and data repair. The model
system consists of a client and multiple servers. The client
owns a file F and wants to redundantly store coded blocks in
the servers in a way that the client can reconstruct F and can
repair coded blocks in a corrupted server. The client firstly
divides F into m blocks: F = v1|| · · · ||vm. Each vk ∈ Fz

q
where k ∈ {1, · · · ,m}. Fz

q denotes a z-dimensional finite field
of a prime order q. The client then augments vk with a vector
of length m which contains a ‘1’ bit in the k-th position and
(m−1) ‘0’ bits elsewhere. The resulting block is called aug-
mented block (denoted by wk). wk has the following form:

wk = (vk,

m︷�������������������︸︸�������������������︷
0, · · · , 0, 1︸������︷︷������︸

k

, 0, · · · , 0) ∈ Fz+m
q (1)

Thereafter, the client randomly chooses m coefficients
α1, · · · , αm in Fq to compute coded blocks using the lin-
ear combination c =

∑m
k=1 αk · wk ∈ Fz+m

q . The clients
stores the coded blocks in the servers. To reconstruct F, any
m coded blocks are required to solve m augmented blocks
w1, · · · ,wm using the accumulated coefficients contained in
the last m coordinates of each coded block. After the m
augmented blocks are solved, m file blocks v1, · · · , vm are
obtained from the first coordinate of each augmented block.
Finally, F is reconstructed by concatenating all file blocks.
Note that the matrix consisting of the coefficients used to
construct any m coded blocks should have full rank. Koetter
et al. [13] proved that if the prime q is chosen large enough
and the coefficients are chosen randomly, the probability for
the matrix to have full rank is high. When a server is cor-
rupted, the client repairs it by retrieving the coded blocks
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Fig. 1 The client stores the coded blocks in the server S1,S2,S3. Sup-
pose that S1 is corrupted, the client repair it by the linear combinations of
the coded blocks from S2 and S3.

from healthy servers and linearly combining them to regen-
erate new coded blocks. An example of the data repair is
given in Fig. 1.

2.3 InterMac

In our scheme, the direct repair yields a challenge that how
to allow the new server which is untrusted to check the pro-
vided coded blocks without learning the secret key of the
client. The InterMac [27] is a suitable technique to generate
such a key for the new server. Basically, the InterMac is pro-
posed to generate a vector which is orthogonal to a given set
of vectors. Formally, given a set of vectors {w1, · · · ,wm},
the algorithm outputs a vector kp such that wk · kp = 0,
∀k ∈ {1, · · · ,m}.

1. The InterMac algorithm is described as follows:
InterMac(w1, · · · ,wm)→ kp:

• Find the span π of w1, · · · ,wm ∈ Fz+m
q .

• Construct matrix M in which {w1, · · · ,wm} are the
rows of M.

• Find the null-space of M, denoted by π⊥M , which is
the set of all vectors u ∈ Fz+m

q such that M ·uT = 0.
• Find the basis vectors of π⊥M , denoted by

B1, · · · , Bz ∈ Fz+m
q // Theorem 1 will explain why

the number of basis vectors is z.
• Compute kp ← Kg(B1, · · · , Bz).

2. The sub-algorithm Kg used in the InterMac algorithm
is given as follows:
Kg(B1, · · · , Bz)→ kp:

• Generate ri
rand← Fq.

• Compute kp ← ∑z
i=1 ri · Bi ∈ Fz+m

q .

Theorem 1: Given {w1, · · · ,wm} (each wk ∈ Fz+m
q ), the

number of basis vectors of π⊥M is z.

Proof: rank(M) = m. Let πM be the space spanned by the
rows of M. For any m× (z+m) matrix, the rank-nullity theo-
rem gives: rank(M)+nullity(M) = z+m where nullity(M) is
the dimension of π⊥M . It yields: dim(π⊥M) = (z + m) − m = z.
Therefore, the number of basis vectors of π⊥M is z. In the
InterMac, we denote the basis vectors by B1, · · · , Bz. �

3. Adversarial Model

In our scheme, the client is trusted and the servers are un-
trusted. Assume that the servers do not collude with each
other. The servers can perform two types of attacks:

1. In the check phase: the servers disrupts the system or
modifies the data. The attacks can be commonly pre-
vented by the tags, we thus do not focus on them.

2. In the repair phase: the servers can perform: (i) pollu-
tion attack which is a common attack of network cod-
ing, and (ii) curious attack which is a special attack of
the direct repair. We focus on them in the security anal-
ysis.

• Pollution Attack. A malicious server firstly uses a
valid coded block to pass the check phase, but then
injects an invalid coded block in the repair phase to
prevent data repair. An example is given as follows:

– Encode: the client encodes augmented blocks
(w1,w2,w3) to six coded blocks: c11, c12 (stored
in the server S1), c21, c22 (stored in the server
S2), and c31, c32 (stored in the server S3). Sup-
pose that S1 will perform a pollution attack.

– Check: S3 is corrupted.
– Repair: S3 should be repaired by two coded

blocks: c′31 (which is a linear combination of c11

and c12) and c′32 (which is a linear combination
of c21 and c22). However, S1 is not detected be-
cause this time is the repair phase, not the check
phase. The client still thinks S1 is healthy and
requests coded blocks from S1 and S2. S1 will
provide an invalid coded block c′′31 to the client
instead of c′31.

• Curious Attack. This attack is performed by the new
server in the repair phase. Every repair time, the
new server is given a key kr constructed from the se-
cret key kC of the client and a variant kp. Having kr,
the new server tries to obtain kC in order to pass the
check phases in the later time step (called epoch).

4. Proposed D2-POR Scheme

4.1 Notations

The notations used throughout the D2-POR scheme are
given in Table 1.

4.2 Construction

4.2.1 Setup

(1) Create augmented blocks: C divides F into m blocks
F = v1|| · · · ||vm. Each vk ∈ Fz

q where k ∈ {1, · · · ,m}. C
creates m augmented blocks as Eq. (1).
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Table 1 Notations
C client
F original file
m number of file blocks
n number of servers
d number of coded blocks in each server
k file block index (k ∈ {1, · · · ,m})
i server index (i ∈ {1, · · · , n})
j coded block index in each server ( j ∈ {1, · · · , d})
vk file block (k ∈ {1, · · · ,m})
wk augmented block of vk

twk tag of wk

Si server
ci j j-th coded block stored in Si

ti j tag of ci j

l number of healthy servers used for data repair
Sr corrupted server
S′r new server which is used to replace Sr

F
z
q z-dimensional finite field F of a prime order q

(2) Keygen: C generates two types of keys:

• Key of the client (kC): kC
rand← Fz+m

q .
• One-time key for a new server every repair time (kr):
C firstly computes a value kp ∈ Fz+m

q such that
wk · kp = 0 for ∀k ∈ {1, · · · ,m} by using kp ←
InterMac(w1, · · · ,wm). C then computes:

kr = kC + kp ∈ Fz+m
q (2)

kC is static, only kp is recomputed every repair time.
kr is sent to the new server only when a data repair is
executed.

4.2.2 Encode

(1) C computes a tag for each augmented block:
For ∀k ∈ {1, · · · ,m}:

twk = wk · kC ∈ Fq (3)

(2) C computes nd coded blocks and nd corresponding tags
as follows:
For ∀i ∈ {1, · · · , n},∀ j ∈ {1, · · · , d}:
• C generates m coefficients: αi jk

rand← Fq where k ∈
{1, · · · ,m}.

• C computes code blocks:

ci j =
∑m

k=1
αi jk · wk ∈ Fz+m

q (4)

• C compute tags:

ti j =
∑m

k=1
αi jk · twk ∈ Fq (5)

(3) C sends {ci j, ti j} where j ∈ {1, · · · , d} to server Si.

4.2.3 Check

(1) C requires Si to provide its proof.
(2) Si where i ∈ {1, · · · , n} combines coded blocks and tags
as follows:

• Si generates d coefficients: βi j
rand← Fq where j ∈

{1, · · · , d}.
• Si combines coded blocks:

cSi =
∑d

j=1
βi j · ci j ∈ Fz+m

q (6)

• Si combines tags:

tSi =
∑d

j=1
βi j · ti j ∈ Fq (7)

• Si sends {cSi , tSi } to C.
(3) C verifies Si as follows:
For ∀i ∈ {1, · · · , n}:
• C computes:

t′Si
= cSi · kC ∈ Fq (8)

• C checks iff:

tSi = t′Si
(9)

If it holds, Si is healthy. Otherwise, Si is corrupted.

4.2.4 Repair

Suppose Sr is corrupted. A set of l healthy servers
{Si1 , · · · ,Sil } are required to provide data to a new server
S′r, which is used to replace Sr.
(1)Si where i ∈ {i1, · · · , il} provides its data toS′r as follows:

• Si generates d coefficients: βi j
rand← Fq where j ∈

{1, · · · , d}.
• Si combines coded blocks:

cSi =
∑d

j=1
βi j · ci j ∈ Fz+m

q (10)

• Si combines tags:

tSi =
∑d

j=1
βi j · ti j ∈ Fq (11)

• Si sends {cSi , tSi } to S′r.
(2) S′r checks Si where i ∈ {i1, · · · , il} as follows:
• S′r computes:

t′Si
= cSi · kr ∈ Fq (12)

• S′r checks iff:

t′Si
= tSi (13)

(3) S′r computes d new coded blocks and d tags:
For ∀ j ∈ {1, · · · , d}:

• S′r generates l coefficients: γri
rand← Fq where i ∈

{i1, · · · , il}.
• S′r computes new coded block:

cr j =
∑il

i=i1
γri · cSi ∈ Fz+m

q (14)

• S′r computes new tag:
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tr j =
∑il

i=i1
γri · tSi ∈ Fq (15)

4.3 Correctness

(1) The correctness of Eq. (9) is proved as follows:
tSi =

∑d
j=1 βi jti j//due to Eq. (7)

=
∑d

j=1
∑m

k=1 βi jαi jktwk // due to Eq. (5)
=

∑d
j=1

∑m
k=1 βi jαi jkwkkC//due to Eq. (3)

t′Si
= cSi kC //due to Eq. (8)
=

∑d
j=1 βi jci jkC //due to Eq. (6)

=
∑d

j=1
∑m

k=1 βi jαi jkwkkC //due to Eq. (4)
= tSi .

(2) The correctness of Eq. (13) is proved as follows:
tSi =

∑d
j=1 βi jti j//due to Eq. (11)

=
∑d

j=1
∑m

k=1 βi jαi jktwk //due to Eq. (5)
=

∑d
j=1

∑m
k=1 βi jαi jkwkkC //due to Eq. (3)

t′Si
= cSi kr //due to Eq. (12)
=

∑d
j=1 βi jci jkr //due to Eq. (10)

=
∑d

j=1
∑m

k=1 βi jαi jkwkkr //due to Eq. (4)
=

∑d
j=1

∑m
k=1 βi jαi jkwk(kC + kp) //due to Eq. (2)

=
∑d

j=1
∑m

k=1 βi jαi jkwkkC // due to kpwk = 0
= tSi

4.4 Dynamic Operations

When C performs a dynamic operation on a file block,
herein introduces a challenge: how the servers deal with
the coded blocks which are related to the modified/
inserted/deleted file block. The trivial solution, which is to
encode the data again, incurs very high costs. In our so-
lution, the old coded blocks and tags stored in the servers
can be re-used, and only a small additional computation is
needed for the dynamic operations.

Firstly, we give the following theorem, which will form
the basis of the dynamic operations.

Theorem 2: The number of basis vectors of the matrix
consisting of m augmented blocks (each augmented block
belongs to Fz+m

q ) is z.

Proof: Let M be the matrix in which m augmented blocks
are rows in M:

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

w1

w2
...

wm

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

z︷︸︸︷
v1

m︷�������������������︸︸�������������������︷
1 0 0 · · · 0

v2 0 1 0 · · · 0
...

...
...

...
...

...
vm 0 · · · · · · 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
︸�������������������������������︷︷�������������������������������︸

m×(z+m)

(16)

Because each augmented block wk ∈ Fz+m
q (where k ∈

{1, · · · ,m}) consists of vk ∈ Fz
q and m elements in Fq, the

dimension of M is m × (z + m). Thus, the number of pivot
variables is m. The number free variables is (z+m)−m = z.
Therefore, the number of basis vectors of M is z. �

4.4.1 Modification

Suppose that C modifies a file block vX to a new file block
v′X where X ∈ {1, · · · ,m}. Let wX and w′X be the augmented
block of vX and v′X , respectively.

(1) C modifies kr:

Let M be the matrix consisting of m augmented blocks. Af-
ter the modification, only vX is changed and other elements
in M are unchanged. Namely, M is changed to M′ as fol-
lows:

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v1 1 0 0 · · · · · · · · · 0
v2 0 1 0 · · · · · · · · · 0
...

...
...

...
...

...
...

vX ︸�������������︷︷�������������︸
X

0 · · · 0 1 0 · · · 0

...
...

...
...

...
...

...
vm 0 · · · · · · · · · · · · 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
︸�����������������������������������������������︷︷�����������������������������������������������︸

m×(z+m)

M′ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v1 1 0 0 · · · · · · · · · 0
v2 0 1 0 · · · · · · · · · 0
...

...
...

...
...

...
...

v′X ︸�������������︷︷�������������︸
X

0 · · · 0 1 0 · · · 0

...
...

...
...

...
...

...
vm 0 · · · · · · · · · · · · 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
︸�����������������������������������������������︷︷�����������������������������������������������︸

m×(z+m)

The modification does not affect kC because kC
rand← F

z+m
q .

However, the modification will affect kr(= kC + kp) because
kp is constructed from M. This is why we need to update kr.

The number of columns in M is (z + m). The number
of basis vectors of M is z (Theorem 2). Thus, each of these
z basis vectors consists of (z + m) elements in Fq, denoted
by Bψ = (b1, · · · , bz+m)T where ψ ∈ {1, · · · , z}. Similarly,
each of the z basis vectors of M′ also consists of (z + m)
elements in Fq, denoted by B′ψ = (b′1, · · · , b′z+m)T where ψ ∈
{1, · · · , z}. We need to find B′ψ from Bψ.

Because vX ∈ Fz
q, vX is viewed as a vector of z elements

in Fq: vX = (vX1, · · · , vXz). In M, only vX is changed and
other elements are unchanged. Thus, for each ψ ∈ {1, · · · , z},
C only needs to update the (z+X)-th element of Bψ by com-
puting ((−∑z

μ=1 v′Xμbμ) mod q). Namely:

B′ψ = (b1, · · · , bz+X−1, (−
z∑

μ=1

v′Xμbμ) mod q ,

bz+X+1, · · · , bz+m)T

(17)

After having B′ψ for ψ ∈ {1, · · · , z}, C computes k′p ←
Kg(B′1, · · · , B′z) (Sect. 2.3). C finally sends k′r = kC + k′p to a
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new server when a next repair phase is executed.

(2) C computes tag for w′k:

• C computes: t′X = w′XkC ∈ Fq

• C sends {w′X , t′X} to Si.

(3) Si updates coded blocks and tags:

Because vk ∈ Fz
q, vk can be viewed as a vector of z elements

in Fq: vk = (vk1, · · · , vkz). An augmented block wk ∈ Fz+m
q

has the form:

wk = (vk1, · · · , vkz,

m︷�������������������︸︸�������������������︷
0, · · · , 0, 1︸������︷︷������︸

k

, 0, · · · , 0) ∈ Fz+m
q (18)

Because a coded block ci j =
∑m

k=1 αi jkwk ∈ Fz+m
q , ci j

can be also viewed as a vector of (z+m) elements in Fq. Let
ci j[x] denote the x-th element of ci j where x ∈ {1, · · · , z+m}:

ci j =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑m
k=1 αi jkvk1

...∑m
k=1 αi jkvkz

αi j1
...

αi jm

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ci j[1]
...

ci j[z]
ci j[z + 1]

...
ci j[z + m]

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

(19)

For ∀ j ∈ {1, · · · , d}, Si computes new coded blocks:

c′i j =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ci j[1] + αi jX(v′X1 − vX1)
...

ci j[z] + αi jX(v′Xz − vXz)
ci j[z + 1]

...
ci j[z + m]

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

(20)

For ∀ j ∈ {1, · · · , d}, Si computes new tags:

t′i j = ti j + αi jX(t′X − tX) (21)

where ci j and ti j are old coded blocks and tags. Coefficient
αi jX can be found at the (z + X)-th element of ci j.

The modification only needs O(z) for modifying kr,
O(1) for computing tag for w′k and O(z) for updating a coded
block and a tag.

4.4.2 Insertion

Suppose that C inserts a file block vI after an existing file
block vX where X ∈ {1, · · · ,m}. Let wI be the augmented
block of vI .

(1) C modifies kC:

Before the insertion, wk has (z + m) elements in Fq as
Eq. (18). Thus, kC has (z + m) elements in Fq (says, kC =
(k1, · · · , kz+m)T ). After the insertion, wk has (z + m + 1) ele-
ments in Fq:

wk = (vk1, · · · , vkz,

m+1︷�������������������︸︸�������������������︷
0, · · · , 0, 1︸������︷︷������︸

k

, 0, · · · , 0) ∈ Fz+m+1
q

Thus, new k′C also has (z + m + 1) elements in Fq (says,
k′C = (k′1, · · · , k′z+m+1)T ). Given kC, we find k′C:
• The first (z+ X) elements of k′C are the same as the first

(z + X) elements of kC.
• The (z + X + 1)-th element of k′C (denoted by kI) is

computed as: kI
rand← Fq.

• The last (m− X) elements of k′C are the same as the last
(m − X) elements of kC.

Namely:

k′C = (k1, · · · , kz+X , kI , kz+X+1, · · · , kz+m)T (22)

The reason that we construct such k′C will be explained
in Step 4 (tag update).

(2) C modifies kr:

After the insertion, the matrix M is changed as follows:
• In each of the first X rows: a ‘0’ bit is padded in the

final position.
• In the inserted row (wI): vI is placed in the first z ele-

ments, a ‘1’ bit is placed at the (z + X + 1)-th element
counted from the left, and ‘0’ bits are placed elsewhere.

• In each of the last (m − X) rows: a ‘0’ bit is padded in
the final position and then, the ‘1’ bit is shipped to the
next right position.

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v1 1 0 · · · · · · · · · · · · · · · 0
...

...
...

...
...

...
...

...
...

vX ︸���������������︷︷���������������︸
X

0 · · · 0 1 0 · · · · · · 0

vX+1 ︸��������������������︷︷��������������������︸
X + 1

0 · · · 0 0 1 0 · · · 0

...
...

...
...

...
...

...
...

...
vm 0 · · · · · · · · · · · · · · · 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
︸���������������������������������������������������������︷︷���������������������������������������������������������︸

m×(z+m)

M′ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v1 1 0 · · · · · · · · · · · · · · · · · · 0
...

...
...

...
...

...
...

...
...

...
vX ︸���������������︷︷���������������︸

X

0 · · · 0 1 0 · · · · · · · · · 0

vI ︸��������������������︷︷��������������������︸
X + 1

0 · · · 0 0 1 0 · · · · · · 0

vX+1 ︸��������������������������︷︷��������������������������︸
X + 2

0 · · · 0 0 0 1 0 · · · 0

...
...

...
...

...
...

...
...

...
...

vm ︸�����������������������������������������������������︷︷�����������������������������������������������������︸
m + 1

0 · · · · · · · · · · · · · · · · · · 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
︸�����������������������������������������������������������������︷︷�����������������������������������������������������������������︸

(m+1)×(z+m+1)

We now update k′r as follows. Let Bψ = (b1, · · · , bz+m)T and
B′ψ = (b′1, · · · , b′z+m+1)T where ψ ∈ {1, · · · , z} be the z basis
vectors of M and M′, respectively. Given Bψ, we firstly find
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B′ψ:
• The first (z+X) elements of B′ψ are the same as the first

(z + X) elements of Bψ.
• The (z + X + 1)-th elements of B′ψ is computed as:

b′z+X+1 = (−∑z
μ=1 vIμbμ) mod q.

• The last (m−X) elements of B′ψ are the same as the last
(m − X) elements of Bψ.

In other words:

B′ψ = (b1, · · · , bz+X , (−
z∑

μ=1

vIμbμ) mod q ,

bz+X+1, · · · , bz+m)T

(23)

After having B′ψ for all ψ ∈ {1, · · · , z}, C computes k′p ←
Kg(B′1, · · · , B′z). C finally sends k′r = k′C + k′p to a new server
when next repair phase is executed.

(3) C computes tag for wI :

• C computes tI = wI · k′C.
• C sends {wI , tI} to Si.

(4) Si updates coded blocks and tags:

Because vk ∈ Fz
q, vk is viewed as a vector of z elements in

Fq: vk = (vk1, · · · , vkz). wk ∈ Fz+m
q has the form as Eq. (18).

Because a coded block ci j =
∑m

k=1 αi jkwk ∈ Fz+m
q , ci j can be

also viewed as a vector of (z + m) elements in Fq. Let ci j[x]
denote the x-th element of ci j where x ∈ {1, · · · , z + m} as
Eq. (19).

((4).1) Si updates its coded blocks:

c′i j =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑m
k=1 αi jkvk1 + αi jIvI1

...∑m
k=1 αi jkvkz + αi jIvIz

αi j1
...

αi jX

αi jI

αi j(X+1)
...

αi jm

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ci j[1] + αi jIvI1
...

ci j[z] + αi jIvIz

ci j[z + 1]
...

ci j[z + X]
αi jI

ci j[z + X + 1]
...

ci j[z + m]

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

(24)

where αi jI
rand← Fq.

((4).2) Si updates its tags:

Tags of augmented blocks before the insertion are:
(tw1 , · · · , twX , tw(X+1) , · · · , twm )T = M · kC

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v1 1 0 · · · · · · · · · · · · · · · 0
...

...
...

...
...

...
...

...
...

vX ︸�������������︷︷�������������︸
X

0 · · · 0 1 0 · · · · · · 0

vX+1 ︸�������������������︷︷�������������������︸
X + 1

0 · · · 0 0 1 0 · · · 0

...
...

...
...

...
...

...
...

...
vm 0 · · · · · · · · · · · · · · · 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
×(k1, · · · , kz+1, · · · , k(z+X), k(z+X+1), · · · , kz+m)T

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v11k1 + · · · + v1zkz + kz+1
...

vX1k1 + · · · + vXzkz + kz+X

v(X+1)1k1 + · · · + v(X+1)zkz + kz+X+1
...

vm1k1 + · · · + vmzkz + kz+m

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
By constructing k′C in Step 1, tags of augmented blocks after
the insertion are:
(t′w1

, · · · , t′wX
, tI , t′w(X+1)

, · · · , t′wm+1
)T = M′ · k′C

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v1 1 0 · · · · · · · · · · · · · · · · · · 0
...

...
...

...
...

...
...

...
...

...
vX ︸�������������︷︷�������������︸

X

0 · · · 0 1 0 · · · · · · · · · 0

vI ︸�������������������︷︷�������������������︸
X + 1

0 · · · 0 0 1 0 · · · · · · 0

vX+1 ︸������������������������︷︷������������������������︸
X + 2

0 · · · 0 0 0 1 0 · · · 0

...
...

...
...

...
...

...
...

...
...

vm ︸��������������������������������������������������︷︷��������������������������������������������������︸
m + 1

0 · · · · · · · · · · · · · · · · · · 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
×(k1, · · · , kz, kz+1, · · · , k(z+X), kI , kz+X+1, · · · , kz+m)T

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v11k1 + · · · + v1zkz + kz+1
...

vX1k1 + · · · + vXzkz + kz+X

vI1k1 + · · · + vIzkz + kI

v(X+1)1k1 + · · · + v(X+1)zkz + kz+X+1
...

vm1k1 + · · · + vmzkz + kz+m

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
We can observe that before and after the insertion, the first X
tags and the last (m − X) tags are unchanged. Only the new
tag tI (tag of wI) is inserted. The old tag of ci j is computed
as ti j =

∑m
k=1 αi jktwk . Thus, we compute the tag for c′i j as

follows:

tc′i j
=

X∑
k=1

αi jktwk + αi jI tI +

m∑
k=X+1

αi jktwk

= ti j + αi jI tI (25)

where αi jI is the same as in Eq. (24).
The insertion only needs O(1) for modifying kC, O(z)

for modifying kr, O(1) for computing tag for wI and O(z) for
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updating a coded block and a tag.

4.4.3 Deletion

Suppose that C deletes the X-th file block (vX). Let wX be
the augmented block of vX .

(1) C modifies kC:

Similar to the insertion, before the deletion, kC =

(k1, · · · , kz+m)T . After the deletion, C simply removes the
(z + X)-th element in kC. Namely,

k′C = (k1, · · · , kz+X−1, kz+X+1, · · · , kz+m)T (26)

The reason to construct such k′C will be explained in Step 3
(tag update).

(2) C modifies kr:

After the deletion, the matrix M is changed as follows:
• In each of the first (X − 1) rows, the ‘0’ bit at the final

position is removed.
• The X-th row is removed.
• In each of the last (m − X) rows, the ‘1’ bit is shipped

to the previous left position and then, the ‘0’ bit at the
final position is removed.

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v1 1 0 · · · · · · · · · · · · · · · · · · 0
...

...
...

...
...

...
...

...
...

...
vX−1 ︸���������������︷︷���������������︸

X − 1

0 · · · 0 1 0 · · · · · · · · · 0

vX ︸��������������������︷︷��������������������︸
X

0 · · · 0 0 1 0 · · · · · · 0

vX+1 ︸��������������������������︷︷��������������������������︸
X + 1

0 · · · 0 0 0 1 0 · · · 0

...
...

...
...

...
...

...
...

...
...

vm ︸�����������������������������������������������������︷︷�����������������������������������������������������︸
m

0 · · · · · · · · · · · · · · · · · · 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
︸�����������������������������������������������������������������︷︷�����������������������������������������������������������������︸

m×(z+m)

M′ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v1 1 0 · · · · · · · · · · · · · · · 0
...

...
...

...
...

...
...

...
...

vX−1 ︸���������������︷︷���������������︸
X − 1

0 · · · 0 1 0 · · · · · · 0

vX+1 ︸��������������������︷︷��������������������︸
X

0 · · · 0 0 1 0 · · · 0

...
...

...
...

...
...

...
...

...
vm ︸���������������������������������������������︷︷���������������������������������������������︸

m − 1

0 · · · · · · · · · · · · · · · 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
︸���������������������������������������������������������︷︷���������������������������������������������������������︸

(m−1)×(z+m−1)

We now update k′r as follows. Let Bψ = (b1, · · · , bz+m)T and
B′ψ = (b1, · · · , bz+m−1)T where ψ ∈ {1, · · · , z} be the z basis
vectors of M and M′, respectively. To compute B′ψ from Bψ,
C simply removes the (z + X)-th element of Bψ. Namely,

B′ψ = (b1, · · · , bz+X−1, bz+X+1, · · · , bz+m)T (27)

After having B′ψ for all ψ ∈ {1, · · · , z}, C computes k′p as:
k′p ← Kg(B′1, · · · , B′z). C finally sends k′r = k′C + k′p to a new
server when next repair phase is executed.

(3) Si updates coded blocks and tags:

Because vk ∈ Fz
q, vk can be viewed as a vector of z ele-

ments in Fq: vk = (vk1, · · · , vkz). wk ∈ Fz+m
q has the form as

Eq. (18). Because a coded block ci j =
∑m

k=1 αi jkwk ∈ Fz+m
q ,

ci j can be also viewed as a set of (z+m) elements in Fq. Let
ci j[x] denote the x-th element of ci j where x ∈ {1, · · · , z+m}
as Eq. (19).

((3).1) Si updates its coded blocks:

c′i j =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑m
k=1 αi jkvk1 − αi jXvX1

...∑m
k=1 αi jkvkz − αi jXvXz

αi j1

...
αi j(X−1)

αi j(X+1)

...
αi jm

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ci j[1] − αi jXvX1

...
ci j[z] − αi jXvXz

ci j[z + 1]
...

αi j[z + X − 1]
αi j[z + X + 1]

...
αi j[z + m]

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

(28)

where αi jX = ci j[z + X].

((3).2) Si updates its tags:

Tags of augmented blocks before the deletion are:
(tw1 , · · · , twX−1 , twX , tw(X+1) , · · · , twm )T = M · kC

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v1 1 0 · · · · · · · · · · · · · · · · · · 0
...

...
...

...
...

...
...

...
...

...
vX−1 ︸�������������︷︷�������������︸

X − 1

0 · · · 0 1 0 · · · · · · · · · 0

vX ︸�������������������︷︷�������������������︸
X

0 · · · 0 0 1 0 · · · · · · 0

vX+1 ︸������������������������︷︷������������������������︸
X + 1

0 · · · 0 0 0 1 0 · · · 0

...
...

...
...

...
...

...
...

...
...

vm 0 · · · · · · · · · · · · · · · · · · 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
×(k1, · · · , kz, kz+1, · · · , kz+m)T

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v11k1 + · · · + v1zkz + kz+1
...

v(X−1)1k1 + · · · + v(X−1)zkz + kz+X−1

vX1k1 + · · · + vXzkz + kz+X

v(X+1)1k1 + · · · + v(X+1)zkz + kz+X+1
...

vm1k1 + · · · + vmzkz + kz+m

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
By constructing k′C as Step 1, tags of augmented blocks after
the deletion are:
(t′w1

, · · · , t′wX−1
, t′w(X+1)

, · · · , t′wm+1
)T = M′ · k′C
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=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v1 1 0 · · · · · · · · · · · · · · · 0
...

...
...

...
...

...
...

...
...

vX−1 ︸�������������︷︷�������������︸
X − 1

0 · · · 0 1 0 · · · · · · 0

vX+1 ︸�������������������︷︷�������������������︸
X

0 · · · 0 0 1 0 · · · 0

...
...

...
...

...
...

...
...

...
vm ︸������������������������������������������︷︷������������������������������������������︸

m − 1

0 · · · · · · · · · · · · · · · 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
×(k1, · · · , kz, kz+1, · · · , kz+X−1, kz+X+1, · · · , kz+m)T

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v11k1 + · · · + v1zkz + kz+1
...

v(X−1)1k1 + · · · + v(X−1)zkz + kz+X−1

v(X+1)1k1 + · · · + v(X+1)zkz + kz+X+1
...

vm1k1 + · · · + vmzkz + kz+m

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

We observe that before and after the deletion, only X-th tag
is removed and the other tags are unchanged. The old tag of
ci j is computed as: ti j =

∑m
k=1 αi jktwk . Thus, we compute the

tag for c′i j as follows:

tc′i j
=

X−1∑
k=1

αi jktwk +

m∑
k=X+1

αi jktwk

= ti j − αi jXtX (29)

where αi jX is the same as in Eq. (28).
The deletion only needs O(1) for modifying kC, O(z) for

modifying kr, O(z) for updating a coded block and tag.

5. Security Analysis

Our scheme is secure from pollution attack and curious at-
tack as follows.

Theorem 3: The D2-POR is secured from the pollution
and curious attacks.

Proof:

1. Pollution attack: suppose that A is a malicious server
in a set of l servers used in data repair. A injects an
invalid pair of (cA, tA) to the new server S′r. S′r will
check (cA, tA) using the key kr ∈ Fz+m

q . Because S′r
is assumed to not collude with the other servers, kr is
only known by S′r. Thus,A can only pass the verifica-
tion of S′r with a probability 1/qz+m via the brute-force
search. If q is chosen large enough (e.g, 160 bits), the
probability is 1/(2160)z+m, which is negligible.

Consider that S′r itself is a malicious server who will
perform a pollution attack in the next epoch. Even
though S′r holds kr, S′r cannot pass the verification be-
cause kr is a one-time repair key. Another new server

will be given a key k′r � kr.

2. Curious attack: the new server is given the key kr =

kC + kp ∈ Fz+m
q . Similar to the pollution attack, the

probability of the new server to learn kC is 1/qz+m via
the brute-force search. This probability is from learn-
ing kC directly or learning kp and then obtaining kC by
kC = kr−kp. If q is chosen large enough (e.g, 160 bits),
the probability is 1/(2160)z+m, which is negligible. �

We also show the condition to reconstruct F via the
following theorem.

Theorem 4: F can be reconstructed if in any epoch, at least
l out of n servers collectively store m coded blocks which are
linearly independent combinations of m augmented blocks,
and the matrix consisting of the accumulated coefficients has
full rank (i.e, the rank is equal to m).

Proof: Si stores d coded blocks ci j where j ∈ {1, · · · , d}.
ci j is computed from m augmented blocks w1, · · · ,wm by
ci j =

∑m
k=1 αi jkwk ∈ Fz+m

q . Therefore, to reconstruct F, m
augmented blocks are viewed as the unknowns that need to
be solved. To solve these unknowns, at least m coded blocks
are required such that the accumulated coefficient matrix has
full rank.⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

c(i j)1
=

∑m
k=1 α(i jk)1

· wk

c(i j)2
=

∑m
k=1 α(i jk)2

· wk
...
c(i j)m

=
∑m

k=1 α(i jk)m
· wk

(30)

Let l be the number of servers (l < n) which collectively
stores these m coded blocks. Because each server stores d
coded blocks, l ≥ �m

d �. �

6. Efficiency Analysis

The feature and efficiency comparison between our scheme
and previous schemes (RDC-NC, MD-POR and NC-Audit)
is given in Table 2. Because the MD-POR and NC-Audit
schemes focus on the public authentication, the system mod-
els have one more entity called TPA (Third Party Auditor)
who is delegated the task of checking the servers by C. For
the fair comparison, we assume that the check task in these
schemes is performed by C. Furthermore, the MD-POR
deals with multiple clients. Thus, for fair comparison, we
set the number of clients in MD-POR is one.

6.1 Repair Capacity

The RDC-NC, NC-Audit, MD-POR and D2-POR schemes
follow Theorem 4. The number of healthy servers in each
epoch must be l ≥ �m

d �. The number of corrupted servers is
n − l ≤ n − �m

d �. Thus, the repair capacity is n − �m
d �.

6.2 Storage Cost

Client-side. In the RDC-NC, C stores 5 keys in Fz+m
q . Thus,
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Table 2 The comparison

RDC-NC [19] MD-POR [25] NC-Audit [26] D2-POR

Feature Direct repair No Yes Not completed (*) Yes
Dynamic operations No No No Yes
Symmetric key Yes Yes Yes Yes

Repair Capacity n − �m
d � n − �m

d � n − �m
d � n − �m

d �
STORAGE

Client-side 5(z + m) log2 q (z + m + mdn) log2 q (z + m) log2 q (z + m) log2 q
Server-side O(dn(z + m) log2 q) O(dn(z + m) log2 q) O(dn(z + m) log2 q) O(dn(z + m) log2 q)

COMPUTATION
Encode Client-side O(mnd) O(mnd) O(mnd) O(mnd)

Server-side O(1) O(1) O(1) O(1)
Check Client-side O(n) O(n) O(n) O(n)

Server-side O(dn) O(dn) O(dn) O(dn)
Repair Client-side O(dl) O(1) O(1) O(1)

Server-side O(dl) O(dl) O(dl) O(dl)
Modify Client-side N/A N/A N/A O(z)

Server-side N/A N/A N/A O(dnz)
Insert Client-side N/A N/A N/A O(z)

Server-side N/A N/A N/A O(dnz)
Delete Client-side N/A N/A N/A O(z)

Server-side N/A N/A N/A O(dnz)
COMMUNICATION

Encode O(dn(z + m) log2 q) O(dn(z + m) log2 q) O(dn(z + m) log2 q) O(dn(z + m) log2 q)
Check O(n(z + m + 1) log2 q) O(n(z + m + 1) log2 q) O(n(z + m + 1) log2 q) O(n(z + m + 1) log2 q)
Repair O((l + d)(z + m + 1) log2 q) O(l(z + m + 1) log2 q) O(l(z + m + 1) log2 q) O(l(z + m + 1) log2 q)
Modify N/A N/A N/A O(((n + 1)(z + m)

+n) log2 q)
Insert N/A N/A N/A O(((n + 1)(z + m)

+n) log2 q)
Delete N/A N/A N/A O((z + m) log2 q)

N/A means not applicable due to the lack of support. (*) In the NC-Audit, the direct repair can lead to the pollution attack because the new server cannot
check the provided coded blocks.

the storage cost is 5(z+m) log2 q. In the NC-Audit, C stores
a key in Fz+m

q and mnd coefficients in Fq. Thus, the storage
cost is (z+m+mnd) log2 q. In the MD-POR and D2-POR, C
stores a key in Fz+m

q . Thus, the storage cost is (z + m) log2 q.

Server-side. In all the schemes, there are n server. Each
server stores d coded blocks. Each coded block belongs to
F

z+m
q . Thus, the storage cost is O(dn(z + m) log2 q).

6.3 Computation Cost

Encode. In all the schemes, C needs O(m) to compute m tags
for m augmented blocks, and O(mnd) to compute nd coded
blocks along with the tags. The complexity on the client-
side is thus O(mnd). Meanwhile, the servers only need to
receive the coded blocks and tags from C without any com-
putation. The complexity on the server-side is thus O(1).

Check. In all the schemes, C needs O(1) to verify the aggre-
gated coded block and tag of each server. Therefore, the
complexity on the client-side is O(n) to verify n servers.
Meanwhile, each server needs to combine d coded blocks
and d tags to compute the aggregated coded block and ag-
gregated tag, respectively. Therefore, the complexity of n
servers is O(dn).

Repair. In the RDC-NC scheme, C needs O(l) to check l
pairs of the provided coded block and tag from the healthy

servers, and needs O(dl) to compute d pairs of new coded
blocks and tags using the linear combinations of l pairs of
the provided coded blocks and tags. Therefore, the com-
plexity on the client-side is O(dl). In the MD-POR, NC-
Audit and D2-POR schemes, the complexity on the client-
side is O(1) because C does not need to do anything due to
the direct repair.

In the RDC-NC scheme, each of l servers combines its
d coded blocks and d tags to compute the aggregated coded
block and aggregated tag, respectively. Therefore, the com-
plexity on the server-side is O(dl). In the MD-POR, NC-
Audit and D2-POR schemes, l healthy servers perform as in
the RDC-NC (O(dl)), and the new server performs the task
of C as in the RDC-NC (O(dl)). Therefore, the complexity
on the server-side is O(dl).

Modification. In the D2-POR, C only needs O(z) to recom-
pute kr (Step 1) and O(1) to compute new tag for the mod-
ified augmented block (Step 2). Therefore, the complexity
on client-side is O(z). Meanwhile, each server needs O(dz)
to update coded blocks and tags (Step 3). Therefore, the
complexity of n servers is O(dnz).

Insertion. In the D2-POR, C only needs O(1) to recompute
kC (Step 1), O(z) to recompute kr (Step 2) and O(1) to com-
pute tag of the inserted augmented block (Step 3). There-
fore, the complexity on client-side is O(z). Meanwhile each
server needs O(dz) to update coded blocks and tags (Step 4).
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Therefore, the complexity of n servers is O(dnz).

Deletion. In the D2-POR, C only needs O(1) to recompute
kC (Step 1) and O(z) to recompute kr (Step 2). Thus, the
complexity on client-side is O(z). Meanwhile, each server
needs O(dz) to update the coded blocks and tags (Step 3).
Thus, the complexity of n servers is O(dnz).

6.4 Communication

Encode. In all the schemes, C computes dn coded blocks
and sends d coded blocks to each of n servers. The size of
a coded block is ((z + m) log2 q). Thus, the communication
cost is O(dn(z + m) log2 q).

Check. In all the schemes, during the check phase, each of n
servers sends its aggregated coded block and its aggregated
tag toC. The size of a coded block and a tag is ((z+m) log2 q)
and log2 q, respectively. Thus, the communication cost is
O(n(z + m + 1) log2 q).

Repair. In the RDC-NC, each of l healthy servers sends to C
an aggregated coded block whose size is ((z+m) log2 q) and
an aggregated tag whose size is log2 q (it takes O(l(z + m +
1) log2 q)). After computing d new coded blocks and d new
tags, C sends them to new server (O(d(z + m + 1) log2 q)).
Therefore, the communication cost is O((l + d)(z + m +
1) log2 q). In the NC-Audit, MD-POR and D2-POR, each of
l healthy servers sends directly the aggregated coded block
and aggregated tag to the new server. Thus, the communi-
cation cost is O(l(z + m + 1) log2 q).

Modify. In the D2-POR, C sends the updated kr ∈ Fz+m
q to

new server in Step 1 (O((z + m) log2 q)), and send (w′X ∈
F

z+m
q , t′X ∈ Fq) to each Si where i ∈ {1, · · · , n} in Step 2

(O(n(z + m + 1) log2 q)). Thus, the communication cost is
O((z+m) log2 q+ n(z+m+ 1) log2 q) = O(((n+ 1)(z+m)+
n) log2 q).

Insert. In the D2-POR, C sends the updated kr ∈ Fz+m
q to

new server in Step 2 (O((z + m) log2 q)), and send (wI ∈
F

z+m
q , tI ∈ Fq) to each Si where i ∈ {1, · · · , n} in Step 3

(O(n(z + m + 1) log2 q)). Thus, the communication cost is
O((z+m) log2 q+ n(z+m+ 1) log2 q) = O(((n+ 1)(z+m)+
n) log2 q).

Delete. In the D2-POR, C only needs to send the updated
kr ∈ Fz+m

q to new server in Step 2. Thus, the communication
cost is O((z + m) log2 q).

7. Numeric Example

Suppose m = 3, z = 1, q = 7. The file blocks are:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
v1 = 3 ∈ F1

7

v2 = 4 ∈ F1
7

v3 = 2 ∈ F1
7

(31)

The augmented blocks are:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
w1 = (v1, 1, 0, 0) = (3, 1, 0, 0) ∈ F4

7

w2 = (v2, 0, 1, 0) = (4, 0, 1, 0) ∈ F4
7

w3 = (v3, 0, 0, 1) = (2, 0, 0, 1) ∈ F4
7

(32)

7.1 Generating Keys

Key for client. kC
rand← F4

7. Suppose:

kC = (k1, k2, k3, k4)T = (1, 2, 3, 4)T ∈ F4
7 (33)

Key for new server. kr = kC + kp ∈ F4
7. kp is generated such

that wkkp = 0 for all k ∈ {1, · · · ,m} as follows:
• Construct a matrix M consisting of all augmented

blocks:

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
w1

w2

w3

⎞⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎝
3 1 0 0
4 0 1 0
2 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠ (34)

• Transform M by Gaussian row echelon in F7 to obtain
M′ as follows:

M′ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 5 0 0
0 1 1 0
0 0 1 5

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (35)

• Let x = (x1, x2, x3, x4)T . Solve M′x = 0, we have:⎧⎪⎪⎪⎨⎪⎪⎪⎩
x1 + 5x2 = 0
x2 + x3 = 0
x3 + 5x4 = 0

(36)

• From M′, determine free variables = {x4} and pivot
variables = {x1, x2, x3}. Equation (36) yields:

(x1, x2, x3, x4)T = x4(3, 5, 2, 1)T (37)

• Thus, the basis vector of M is:

B = (b1, b2, b3, b4)T = (3, 5, 2, 1)T (38)

• Generate randomly r = 3 in F7.
• Compute kp as:

kp = rB = 3(3, 5, 2, 1)T mod 7 = (2, 1, 6, 3)T

(39)

It is clear that w1kp mod 7 = w2kp mod 7 = w3kp

mod 7 = 0.
• Finally, kr is computed as:

kr = kC + kp

= (1, 2, 3, 4)T + (2, 1, 6, 3)T mod 7

= (3, 3, 2, 0)T

(40)
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7.2 Dynamic Operations

7.2.1 Modification

Suppose v2 = 4 is modified to v′2 = 5. Matrix M is changed
as follows:

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
3 1 0 0
4 0 1 0
2 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠→ M′ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
3 1 0 0
5 0 1 0
2 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ (41)

(1) C recomputes kr:

• Recompute basis vector:

B′ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
b1

b2

−b1v′2 mod 7
b4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
3
5
6
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (42)

• Generate randomly r′ = 2 ∈ F7.
• Recompute kp:

k′p = r′B′ = 2(3, 5, 6, 1)T mod 7

= (6, 3, 5, 2)T
(43)

It is clear that k′pw1 mod 7 = k′pw′2 mod 7 = k′pw3

mod 7 = 0.
• Recompute kr:

k′r = kC + k′p
= (1, 2, 3, 4)T + (6, 3, 5, 2)T mod 7

= (0, 5, 1, 6)T

(44)

(2) C computes tag for w′2:

• C computes:

t′2 = w′2kC = (5, 0, 1, 0)(1, 2, 3, 4)T mod 7

= 1
(45)

• C sends {w′2, t′2} to Si

(3) Si recomputes coded blocks and tags:

Let {ci j[1], · · · , ci j[4]} denote the elements of ci j:

ci j =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑m
k=1 αi jkwk

αi j1

αi j2

αi j3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
ci j[1]
ci j[2]
ci j[3]
ci j[4]

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

(46)

Si update coded blocks:

ci j =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
ci j[1] + αi j2(w′2 − w2)

ci j[2]
ci j[3]
ci j[4]

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

(47)

Si updates tags:

t′i j = ti j + αi j2(t′2 − t2) (48)

where αi j2 = ci j[3].

7.2.2 Insertion

Suppose vI = 1 is inserted after v2. The matrix M is changed
as follows:

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
3 1 0 0
4 0 1 0
2 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠→ M′ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
3 1 0 0 0
4 0 1 0 0
1 0 0 1 0
2 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (49)

(1) C recomputes kC:

k′C =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

k1

k2

k3

kI
rand← Fq

k4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2
3
5
4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(50)

(2) C recomputes kr:

• Recompute basis vector:

B′ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1

b2

b3

−vIb1 mod 7
b4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3
5
2
4
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(51)

• Generate randomly r′ = 4 ∈ F7.
• Recompute kp:

k′p = r′B′ = 4(3, 5, 2, 4, 1)T mod 7

= (5, 6, 1, 2, 4)T
(52)

It is clear that w1k′p mod 7 = w2k′p mod 7 = wIk′p
mod 7 = w3k′p mod 7 = 0.

• Recompute kr:

k′r = k′C + k′p
= (1, 2, 3, 5, 4)T + (5, 6, 1, 2, 4)T mod 7

= (6, 1, 4, 0, 1)T

(53)

(3) C computes tag for w′2:

• C computes:

tI = wIk
′
C = (1, 0, 0, 1, 0)(1, 2, 3, 5, 4)T = 6 (54)

• C sends {wI , tI} to Si.

(4) Si recomputes coded blocks and tags:

Let {ci j[1], · · · , ci j[4]} denote the elements of ci j:

ci j =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑m
k=1 αi jkwk

αi j1

αi j2

αi j3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
ci j[1]
ci j[2]
ci j[3]
ci j[4]

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

(55)
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Si updates coded blocks:

c′i j =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ci j[1] + αi jIwI

ci j[2]
ci j[3]

αi jI
rand← Fq

ci j[4]

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

(56)

Si updates tags:

t′i j = ti j + αi jI tI (57)

7.2.3 Deletion

Suppose v2 = 4 is deleted. The matrix M is changed as
follows:

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
3 1 0 0
4 0 1 0
2 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠→ M′ =
(
3 1 0
2 0 1

)
(58)

(1) C recomputes kC:

k′C = (k1, k2, k4)T = (1, 2, 4)T (59)

(2) C recomputes kr:

• Recompute basis vector:

B′ = (b1, b2, b4)T = (3, 5, 1)T (60)

• Generate randomly r′ = 3 ∈ F7.
• Recompute kp:

k′p = r′B′ = 3(3, 5, 1)T mod 7 = (2, 1, 3)T (61)

It is clear that w1k′p mod 7 = w3k′p mod 7 = 0.
• Recompute kr:

k′r = k′C + k′p = (1, 2, 4)T + (2, 1, 3)T mod 7

= (3, 3, 0)T (62)

(3) Si recomputes coded blocks and tags:

Let {ci j[1], · · · , ci j[4]} denote the elements of ci j:

ci j =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑m
k=1 αi jkwk

αi j1

αi j2

αi j3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
ci j[1]
ci j[2]
ci j[3]
ci j[4]

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

(63)

Si updates coded blocks:

c′i j =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
ci j[1] − αi j2w2

ci j[2]
ci j[3]
ci j[4]

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

(64)

Si updates tags:

t′i j = ti j − αi j2t2 (65)

where αi j2 = ci j[3].

8. Conclusion

In this paper, we have proposed a network coding-based
POR scheme, name D2-POR, to support the direct repair
and the dynamic operations in a symmetric key setting. The
idea is based on the InterMac technique which can gener-
ate a key such that the key is orthogonal to the augmented
blocks. The security analysis is showed to prevent the pol-
lution attack and curious attack. The efficiency analysis is
given based on complexity theory to compare with the pre-
vious scheme.
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[21] D. Cash, A. Küpçü, and D. Wichs, “Dynamic proofs of retrievability
via oblivious ram,” In: Proc. of Conf. on Theory and Applications
of Cryptographic Techniques - EUROCRYPT 2013.

[22] S. Elaine, S. Emil, and P. Charalampos, “Practical dynamic proofs
of retrievability,” In: Proc. of SIGSAC conf. on Computer & com-
munications security - CCS’13, pp.325–336, 2013.

[23] B. Chen and R. Curtmola, “Robust dynamic remote data checking
for public clouds,” In: Proc. of Conf. on Computer and communica-
tions security - CCS’12, pp.1043–1045, 2012.

[24] Q. Wang, C. Wang, K. Ren, W. Lou, and J. Li, “Enabling Public Au-
ditability and Data Dynamics for Storage Security in cloud Comput-
ing,” In: IEEE Trans. parallel and distributed system, vol.22, no.5,
pp.847–859, 2011.

[25] K. Omote and T.P. Thao, “MD-POR: Multi-source and Direct Repair
for Network Coding-based Proof of Retrievability,” In: Journal of
Distributed Sensor Networks (IJDSN), Article ID:586720, vol.9198,
pp.713–730, 2015.

[26] A. Le and A. Markopoulou, “NC-Audit: Auditing for network cod-
ing storage,” In: Proc. of IEEE Int. Symposium on Network Coding
- NetCod’12, pp.155–160, 2012.

[27] A. Le A and A. Markopoulou, “On detecting pollution attacks in
inter-session network coding,” In: Proc. of 31st IEEE conf. on Com-
puter Communications - INFOCOM’12, pp.343–351, 2012.

[28] K. Omote and T. Thao, “DD-POR: Dynamic Operations and Direct
Repair in Network Coding-based Proof of Retrievability,” In: Proc.
of 21st Annual International Computing and Combinatorics Confer-
ence - COCOON’15, vol.9198, pp.713–730, 2015.

Kazumasa Omote received his M.S. and
Ph.D. degrees in information science from Japan
Advanced Institute of Science and Technology
(JAIST) in 1999 and 2002, respectively. He
joined Fujitsu Laboratories, LTD from 2002 to
2008 and engaged in research and development
for network security. He has been a research as-
sistant professor at the Japan Advanced Institute
of Science and Technology (JAIST) since 2008.
His research interests include applied cryptogra-
phy and network security. He is a member of the

IPS of Japan.

Phuong-Thao Tran received her M.S.
degree in information science from Japan Ad-
vanced Institute of Science and Technology
(JAIST) in 2012. She is now the third-year PhD
candidate in information science from Japan
Advanced Institute of Science and Technology
(JAIST).

http://dx.doi.org/10.1109/jsac.2013.sup.0513026
http://dx.doi.org/10.1109/tit.2010.2054295
http://dx.doi.org/10.1145/1866835.1866842
http://dx.doi.org/10.1109/tc.2013.167
http://dx.doi.org/10.1007/978-3-642-38348-9_17
http://dx.doi.org/10.1145/2508859.2516669
http://dx.doi.org/10.1145/2382196.2382319
http://dx.doi.org/10.1109/tpds.2010.183
http://dx.doi.org/10.1007/978-3-319-21398-9_56
http://dx.doi.org/10.1109/netcod.2012.6261901
http://dx.doi.org/10.1109/infcom.2012.6195771
http://dx.doi.org/10.1007/978-3-319-21398-9_56

